Āe;欢迎关注“新浪科技”的微信订阅号:t∈echsina
੍欢迎关注“新浪科技”的微信订阅号:tecઍhsina ×;
∏ 文/¢万博ε
ˆ
Ö来源:赛博汽车(ID:Cਠyber-car)
小鹏汽车2022年的બ10Ö2&4科技日,下一代智能驾驶系统XNGP是绝对的主角。
85分钟的直⊕播中,将近50分钟的画面都给了Ι一个人——讲到嗓子沙哑的小鹏自动驾驶副总裁吴新宙。Η
从XNGP的新一代Xnet感知架构,到数据收ð集、标注、训练和部署的૨自监督自学习技术છ模型,还有XNGP系统详细的部署时间表。
技术细节足够硬核,Μ且里里外外ࢵ透着一股逐渐特斯拉☺化的味道。
当然,最后Ε还少不了的一个彩蛋是:小鹏Ro»bo৻taxi计划。
‹
દ 01Ì
će;¸ XNG▤P技术细节全在这里了
关于XNGP,吴新宙在近50分钟的时间里,分享ⓙ了其与上一代的XPILOT系统的区别,以及软件技术ξ细节。
根据官方ણ的口径,⇒XNGP未来将会成长为一个全场景辅助驾驶的系统,可以在无高精地图的前提下实Κ现高阶智能辅助驾驶功能,最终的能力表现是超过大部分司机。
而XPILOT最终也将实现上述的能力,但最大 的区别在于ૉ,无法脱离高精地૮图的运用。
在XNGP的能力进度表规划上,小鹏希望可以在2023年逐步¿落地全场景辅助驾驶,2025年之后开始向全面自动驾👿驶进发。
也👽因此,ΧXNGP对于小鹏ì来说,可以理解为从辅助驾驶过渡到自动驾驶的最后一款智能驾驶系统,承上启下的意义不言而喻。
所以,这次σ的技术分享,也格外的硬核细致,归结起来一句话,感知进化和数据闭环,两大板块指向一个重ો点——城市场º景的高级别辅助驾驶。
吴◙新宙表示,在城市场景落地高级别辅助驾驶,相对于高速和泊车两大场å景,具有非常大的ⓛ难点。
首先是👽需要面对场景相对更加复杂多变,比较典型的例子是,城市道路错综复杂,主干道和辅路情况更多,–交通参与者的行为不够规范,改道施工比频繁等等。单是改道施工这一条,吴新宙表示,光是广州的路面平均一天就有两起î,一年下来超过500次。
场景的复杂多变,也要⌋求城市高级别辅助驾驶需要⌊具备更强的能力,比如横向操控、੬不确定场景处理和博弈等等。
另外,基于这些Ο难点,吴新宙还对高精地图的使用给出了自 己的判断:城市高级别辅助驾驶,是基于车本ਖ਼身核心的感知能力进行判断。
一定程度上,吴新宙的态度已经能够说明在失去高精地图ⓠ资质后,小鹏现在及未来智能驾驶思维ઐ的Ü转变趋势——重感知轻地图路线。
Ú所以落到感知上,小鹏在这次科技日上推出了新一代的感知架构——Xćd;net。
Xnet的特点就是多相机、多帧数据输入方式,简单理解一下就是,Xnet可×以直接将连续的视频流数据输入深度学习模型当中,然后直接输出在3维空间的结果,本质上是一种前融合的输出方式。而在此之前,小鹏的感知架构是通过多相机单帧的方式输入模型,后期再利‰用算法进Ο行数据融合。
ƒ
类比一下,整体类似于特斯拉在去年AI ćb;DAY上分享的基于视频流数据的共享特征多任务型神经网Υ络架构。
ૢ而这种能力带来的ਜ优势是,可以让车辆具备超强的静态环视感知É能力,即时生成高精地图,以此摆脱或者减轻对高精地图的依赖。
动态感知方面,Xn∇et感知架构也具备更强的360度感知,靠近车身的感知盲区得到加强,同时加入了速度感知和意图ય预测,使得系统的博弈能力ࢵ和变道成功率更高。
以上就是小鹏在感知架构方面的最∑新进展–,而感a0;知之后,就是数据的处理和算法部署。
按照数据和算法的迭代关系,吴新宙将小鹏的ા整ਫ个数←据闭环分成4大关节:数据收集、标注、训练和部署。
首先,数据收集层面上,小鹏在近10&#ffe1;万辆的小鹏车型上部署∃了超过300个触发器,可以随时随地将场景数据收集上ટ传。
其次,标注方面ਜ,多相机多帧的输入也意味着数据量的大幅增长。比如训练一个视频流输入的网络,就需要50-100万个短视频,需િ要标志的动态数据数以亿计。
♫为此,小鹏引入全自动的标注系统,对比人工标注,全自动标注系统效率高,过去2000个人一年的标注任务,现在用1É6天左右就能完成,效率可以提升45000倍。另外在数据的质量和信息全面性上,全自动标注系统也更有优势。
关于模型训练的部分,算力庞大的ઐ智算或超ৄ算中心,似乎成为自动驾驶玩家ćc;的共同选择。
就在前不久,小鹏与阿里合作建设扶摇智算中心,据了解⇑,该智算中心的算力可以达到600PFLOPS,原来需要276天才能训练完成的模型,现在可以缩短到11个小š时,效率提升超过600倍。
❄
最后是算法部署,小鹏在这方面最新的进展是,对Transformer算子做了完全的∏重构。也因此,算法模型的运行效率和算力利用率,得到了非常大的优化。θ
小鹏披露ćb;,重构算子之后,算法的运行时间获ì得2.9倍的增益,运算时间有了⌊20倍的缩减。同时,小鹏还通过剪枝算法,完成了2.9倍的模型加速。
这些数字落实到算力利用率上,吴新宙þ给出了一组数据:原来需要一√颗Orin芯片1.22倍算力Ċc;的模型,只需要用到9%的算力。
而上&#ffe1;面一整个数据处理和算ⓩ法迭代的核心,是一个全闭环、自成长的AI数据体系。
根据吴新宙的介绍,这个AI数据体系可以分成两👽个部分,分别处理真实数据和仿真数据,而体系的核é心则是一个自监督学习的技术网络——黄金⊃骨干模型。
通过这个黄金骨干模型,૧车辆遇到的某个∪corner case,比如异形车辆数据,会自动上传云端,并找出大量的同类真实场景数据输入模Ö型中进行训练。
而仿真数据的ય·处理不同,一些在真实场景罕有的corner case,一旦被采集到就会通过UEⓙ引擎产生具备真值的同类仿真场景,之后再输入到模型进行训练。
同样按照这个流程操作,不↔同之处在于,一些非常难以遇到的cમorner case,在上传之后会通过UਮE引擎产生具备真值的仿真数据。
而这个黄金骨干模型,带来的核心优势就一个字:快。吴新宙表示,通过黄金骨干模型,XNGP技术网络的提升和发布模型训练解耦,新的corner case出现,只需要在现有的基干网络上进行优化,不需要从头训练。好处就是,算法≡的迭代ઐ速度和成本可以大ી幅优化。
以≠®上,就是XNGP的全部细节,在最后,吴新宙还给出了一个One more thing:Robo½taxi。
就在不久之前,小鹏G9通过了封闭道路的自动驾驶测试,目前已获得智能网联汽车道路测试许可。也就是说¡,小鹏G9作为♥Robotaxi的承载车型,上路的牌照已经到手了,下一步就是具体的ⓢ落地上路。
³ ੈ根据规划,小鹏Roૠbotaxi将会在明年或后年出现在广州街头,在有安全员的前提下载客运营。
所有ä关于♨XNGP的软件细节全部讲完了,是不是挺硬核?≅
而消化这些干货的同时,我们也可以发现一个现象,小鹏的智能驾驶软Α件方案,越发的特斯∉拉化了૧。
小鹏XNGP软Π件方案的每一个部分,包括多相机多帧的视频流输入方式、速度感知和意图预测的动态感知、全自动数据标注和自监督自学习模型,甚至是大算力智算‘中心扶摇的建设和自学习,几乎都能在特斯拉近两年的AI DAY上找到对标。
甚至用量ςï产乘用车作为Robotaxi车辆χ,也是马斯克一开始的态度,只是后来这个flag被无限期延长而已。
而这个å现象,已经不单单只有小鹏一家,毫末智α行也是积极的在两Χ家的AI DAY上找相同。
所以是大∂家抄作业,还是英雄所见略同 ,最后都得殊途同归ƿ呢?
∋ 0⊕2
∴XNGP高阶驾驶辅助系઼统,2024年全场景打通
需࠹要注意的是,XNGP目前还是一个期货产品,今年交付的À小鹏G9 MAX版(其他版本仅支持XPILOT)仅有高速NGP、记忆泊车、LCC、智能ਠ泊车等能力。
城市NGP,需વ要等到明年上半年才能上车,届时将有广州ਭ、深圳和上海三座城市支持城市NGPŸ。
到明▥年下半年,XNGP就可以在全国大部分无高࠽精地图城市,落地城市NGP核心的开放变道、Ç超车和左右转功能。
最终,2024年,高速、城²市开放Å道路以及泊车全场景打通,实现车位ࢮ到车位的智能导航辅助驾驶能力,而且是脱离高精地图的那种。
从这个时间规ƒ划表来ਬ看,小鹏重感知轻地图的技术转型,现Υ在还处在早期阶段。
另外,上一代智驾系统XPILOT小鹏也没有放弃迭代,在这次科技日上,吴新宙给出了一个有点复ਯ杂›的更新时间线(瞬间想到了G9发布会上那张让人看不懂的车型组合PPT)。¼
具体迭代φ的迭代节奏,ત请看©下图:
以防¿大家看不懂,这里做个小总结,重点有3个(敲黑⁄Ċb;板敲黑板):
其一,到2023年下半年,XPILOT将ⓔ会迭代到辅助驾驶能力的天花板,具体表现,应该就是在શ高精地图的支持下实现高速+城市NGP以及记忆泊←车,无高精地图的地区,城市开放道路仅支持LCC基础上的红绿灯识别和车道级导航;
其二,开放高精地图的城市÷,♩只有广Ó州、深圳和上海;
其三,XPILOT能力的集大成者车型将是小鹏P5 E版,想体ੑ验的朋友记得看准÷了再买≠。
☺ ϖ 03Ċa;
机ਮ器马&am☜p♩;飞行汽车很潦草,语音交互有看点
–
智能座舱部分,最大的进⇑展是,小鹏带来了全场景语Ý音2.0。
据何小鹏∉介绍,全场ⓔ景语音2.0首次将MIMO多音区Þ技术应用在车载语音系统上,通过小鹏自研的语音架构,小鹏语音交互在功能上也迎来一些升级。
具体来看,ⓟ主要有以下几点:ⓠñ
首先,全车多路语音流并行处理,支持处理四Ö音区并发、端云一体、实í时流式识别理解、并行指ૣ令等各种功能交织的语音交互请求;
ƒ
其次,全车多个音区的上下文理解,同时既维护单人的对话和上下文管理;
最后,去掉唤醒词,语音全程待命,在网络状况较差的条件ρ下,b2;也能实现600૩多项车辆功能控制。
说到机器马和飞行汽车,ø今年的科技日多少有点“槽点大于看点”的意Œ思ú。
小鹏汽车CE⌈O何小鹏在科技日上表示,在过去一年中,对于机器马各个方面进行了诸多探索,比如运动的静谧性如何解决?如何在狭窄的环境♥具备避障能力ⓛ,以及机械臂的多场景应用。
基于这些探索,今年展出的机器马……PPT,较去年来看有了比较大的变化,比如面œ部增加了AR投ò影仪,机器马的ê骨骼和表皮,也应用了更柔软的材料,骨骼材料也是轻量化设计。
这一部分的介绍很短,◙不过何小鹏也在最后留下彩蛋——一个'蒙着布的机器马。
ઢ 希望明年布♣揭开能看见真东西ⓗ。
相比之下,飞行汽车º这一趴,好歹看见了真的验证车。不过与此前的双翼螺旋桨结构不同的是,最新的样车以四翼螺ભ旋桨的面貌出现,何小鹏表示,这 种设计基于飞行稳定性的考量。
同时从放出的量产建模视频来看,四翼螺旋桨应该会保留到将来的ⓢ量产车‘上,同时量产车将同时具备ì陆行和飞行两种行进方式。
这个静止状态,有点像一¸辆机甲化的小鹏P7背ⓨ着一堆旅行箱:
虽然Ω目前还在验证阶段,但何小鹏依然自信,小鹏汇天的飞行ⓕ汽车,将是全球首≡款能飞又能开的飞行汽车。
ધ
👽 期待吃饼~ਖ਼
(声明:本文仅代表作▒者观点,不代表新浪网立场。)
ⓤ
Ó文章关键词:
⊆ 网络文化
ò
用Ο微信扫描二♬维码
分享至好友和朋友圈
\’ + _substr(Σuids[i].name, ૪0, 14) ℘+ \’
\’ + _∨substr(uids⇐[i].v_reason, 0, 16) + \’
新≡░→浪科技意见反馈留言板
400-0¥5≥2-Ąe;0066 欢迎批评指正
CopyrigÑht © 1996-2022 SINA Corporation
Ö
All ષRights Reserved 新浪公司 版权所有ö